Equational Formulae with Membership Constraints

نویسندگان

  • Hubert Comon-Lundh
  • Catherine Delor
چکیده

We propose a set of transformation rules for rst order formulae whose atoms are either equations between terms or \membership constraints" t 2. can be interpreted as a regular tree language (is called a sort in the algebraic speciication community) or as a tree language in any class of languages which satisses some adequate closure and decidability properties. This set of rules is proved to be correct, terminating and complete. This provides a quantiier elimination procedure: for every regular tree language L, the rst order theory of some structure deening L is decidable. This extends the results of Mal'cev (1971), Maher (1988), Comon and Lescanne (1989). We also show how to apply our results to automatic inductive proofs in equational theories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordering Constraints on Trees

We survey recent results about ordering constraints on trees and discuss their applications. Our main interest lies in the family of recursive path orderings which enjoy the properties of being total, well-founded and compatible with the tree constructors. The paper includes some new results, in particular the undecidability of the theory of lexicographic path orderings in case of a non-unary s...

متن کامل

Completion of Rewrite Systems with Membership Constraints. Part I: Deduction Rules

We consider a constrained equational logic where the constraints are membership conditions t 2 s where s is interpreted as a regular tree language. Our logic includes a fragment of second order equational logic (without projections) where second order variables range over regular sets of contexts. The problem with constrained equational logics is the failure of the critical pair lemma. That is ...

متن کامل

Speciication and Proof in Membership Equational Logic

This paper is part of a long term eeort to increase expres-siveness of algebraic speciication languages while at the same time having a simple semantic basis on which eecient execution by rewriting and powerful theorem-proving tools can be based. In particular, our rewriting techniques provide semantic foundations for Maude's functional sublanguage, where they have been eeciently implemented. M...

متن کامل

Specification and Proof in Membership Equational Logic

Abs t rac t This paper is part of a long-term effort to increase expressiveness of algebraic specification languages while at the same time having a simple semantic basis on which efficient execution by rewriting and powerful theorem-proving tools can be based. In particular, our rewriting techniques provide semantic foundations for Maude's functional sublanguage, where they have been efficient...

متن کامل

FUZZY EQUATIONAL CLASSES ARE FUZZY VARIETIES

In the framework of fuzzy algebras with fuzzy equalities and acomplete lattice as a structure of membership values, we investigate fuzzyequational classes. They consist of special fuzzy algebras fullling the samefuzzy identities, dened with respect to fuzzy equalities. We introduce basicnotions and the corresponding operators of universal algebra: construction offuzzy subalgebras, homomorphisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Comput.

دوره 112  شماره 

صفحات  -

تاریخ انتشار 1994